Hard Satisfiable Formulas for Splittings by Linear Combinations
نویسندگان
چکیده
Itsykson and Sokolov in 2014 introduced the class of DPLL(⊕) algorithms that solve Boolean satisfiability problem using the splitting by linear combinations of variables modulo 2. This class extends the class of DPLL algorithms that split by variables. DPLL(⊕) algorithms solve in polynomial time systems of linear equations modulo 2 that are hard for DPLL, PPSZ and CDCL algorithms. Itsykson and Sokolov have proved first exponential lower bounds for DPLL(⊕) algorithms on unsatisfiable formulas. In this paper we consider a subclass of DPLL(⊕) algorithms that arbitrary choose a linear form for splitting and randomly (with equal probabilities) choose a value to investigate first; we call such algorithms drunken DPLL(⊕). We give a construction of a family of satisfiable CNF formulas Ψn of size poly(n) such that any drunken DPLL(⊕) algorithm with probability at least 1 − 2−Ω(n) runs at least 2 steps on Ψn; thus we solve an open question stated in the paper [12]. This lower bound extends the result of Alekhnovich, Hirsch and Itsykson [1] from drunken DPLL to drunken DPLL(⊕).
منابع مشابه
Why almost all satisfiable k-CNF formulas are easy
Finding a satisfying assignment for a k-CNF formula (k ≥ 3), assuming such exists, is a notoriously hard problem. In this work we consider the uniform distribution over satisfiable k-CNF formulas with a linear number of clauses (clause-variable ratio greater than some constant). We rigorously analyze the structure of the space of satisfying assignments of a random formula in that distribution, ...
متن کاملFrom Spin Glasses to Hard Satisfiable Formulas
We introduce a highly structured family of hard satisfiable 3-SAT formulas corresponding to an ordered spin-glass model from statistical physics. This model has provably “glassy” behavior; that is, it has many local optima with large energy barriers between them, so that local search algorithms get stuck and have difficulty finding the true ground state, i.e., the unique satisfying assignment. ...
متن کاملOn OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables
In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based proof systems that additionally contain a rule that allows to change the orde...
متن کاملN ov 2 00 3 Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances
This paper analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, this paper proves that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families...
متن کاملResolution and Pebbling Games
We define a collection of Prover-Delayer games to characterise some subsystems of propositional resolution. We give some natural criteria for the games which guarantee lower bounds on the resolution width. By an adaptation of the size-width tradeoff for resolution of [10] this result also gives lower bounds on proof size. We also use games to give upper bounds on proof size, and in particular d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017